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Abstract. We introduce a vector model coupled to &rcolour Ashkin—Teller model and solve

its phase diagram in the largeé-imit in two dimensions. It is shown that the transition line starts
from the axis of Ising couplings with a behaviour which can be critical or first order depending
on the strength of the four-spin coupling and of the coupling between spin and vector variables.
Below a negative value of the four-spin coupling the transition is always continuous.

The aim of this paper is to report results of the analytic study in the limit of infinite components
of a model where vector spins are coupled to Ising variables in such a way that the vectors only
interact inside each Ising domain. Models of this kind are expected to describe the critical
behaviour of a class of systems withZ) x Z, ground-state symmetry which includes, for
example, two-dimensional fully frustratédl models [1]. The ground-state manifold of these
models possesses discrete Ising-like chiral symmetry in addition to global continuous rotation
symmetry in spin space and excitations consist of two types of stable topological defects:
line defects of chiral domain walls and point defects, which are vortices. Physical systems
described by the fully frustratedY model are, for example, Josephson-junction arrays in a
transverse magnetic field wil%ﬁlux per plaquette [2].

A prototype model with the above characteristics is ¥#-Ising model defined by the
Hamiltonian [3, 4]

H = —ﬂilz[Aﬁ[ -l’lﬁj(l +Sl‘Sj)+CS,'Sj] (1)
(i)

where 81 = KT, the sum is over the nearest neighbours in a two-dimensional square
lattice, s; = £1 is an Ising spin at thé-site ands; is a two-component unit vector at the
i-site. The neighbouring vectors,, 1, interact with strength 2 only when the sites, j are
not separated by Peierls interfaces. The parantétmntrols the amount of these interfaces.
The phase diagram of thEY-Ising model has been studied by several methods [3-5]. At
large values of” there is Ising order and the usual Kosterlitz—Thouless transition fak the
model has been observed. At smaller valueg§ dflonte Carlo [3, 4] and Migdal-Kadanoff
renormalization [5] results show that there is no phase with Ising disordeXanhdrder.
This has been related [6] to the symmetry of the model under the transformatiens;#;,
since the vectors; are not coupled across an Ising domain wall whese + 1 = 0. An
interesting locus of the phase diagram of the model is the line where Ising and vector variables
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simultaneously order. The critical exponents, associated wittZtherder parameter, have
been found to vary systematically along this line which appeared to be non-universal [3].
Monte Carlo transfer matrix calculations [6] found no clear evidence for variation of these
exponents, which, however, are significantly different from the pure Ising values.

In this paper we consider a convenient generalization of th&fiésing model defined
by the partition function

f-ﬂ/ l_[dn 5<M_1)

d hd 1 - Ot o o J O( o
xeXp{Z[An,wnJ( NZ )+C2ss +—<Z ]):“
) a=1 1

2
where the couplings have been rescaled in order to get a sengible co limit. A term
proportional toD which couples the different Ising species has been also introduced. For
A = 0andN = 2 the model has the same Hamiltonian of the Ashkin—Teller model [7], whose
phase diagram in two dimensions in the largdimit was studied in [8]. In the following we
will consider the model (2) in th&/ — oo limit.

The constraints in the integral (2) can be recast by introducing the stasidandtion
representation

|’7l'i|2 B N +ico |n |2
8 (T — 1) =5 /_ioo dz; exp{ Nz; ( N -1 3)

where the integral is on the imaginary axis withFabitrary. After expressing the biquadratic
termsinthe Hamiltonian using the Hubbard—Stratanovich transformation, the partition function
can be rewritten as

=) () (o)

[Tl [T [ TTow [T

—loo e ¢} (ij) (ij) [ee} (ij)
SN EE
i (ij)
1
T E—— QZ_N C+ i‘+9i'_N i;A+i'+ ii
2(2D—A)§ ij Ofl( ;1 .]) OfSPH(Z é‘] n])iH

(4)
whereNj is the number of sites in the latticd), is the number of linksf; (C +¢;; +6;;) is the

Ising free energy per site in zero magnetic field with bond exchange en¢@ieg;; + 6;,}
and

fSPH(ZuA"'é"z/"‘Th/)———'n/ Hdnl eXp( Zzln +Z A+§u+nl})n n/)

(ij)
()

We should observe that in (4) Rg is arbitrary and the integral indg is on the real axis if
(2D — A) > 0 or on the imaginary axis with R; arbitrary if (2D — A) < 0. IntheN — oo
limit the partition function can be evaluated by the steepest-descent method. Looking for
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homogeneous solutions of the saddle-point equatipasz Vi, ¢;; = ¢, n;; = n andg;; = 6
V(ij), the free energy per site and per compongrt — In Z/N Ny reads as

d d
f=—Z+ﬂ(§°2—f72)+2(2D—_A)92+fl(C+§+9)+fSPH(Z2A+§+7)) (6)

whered denotes the number of spatial dimensions. The saddle-point equafipis = 0,
af/a¢ =0,3f/dn = 0anddf/a6 = 0 are

1— Ofspu(z; A+¢ +1)

(7)
9z
dc _ fspu(z; A+E+n)  3fi(C+E+0) )
N ac o
an _ 8fSPH(Z§aA +¢+n) )
n
o 9fi(C+{+0)
2D—A 30 ' (10)

Here the arbitrariness of Re(and of Re& if 2D — A < 0) is used for satisfying the above
equations with Inmp = 0 (and Im@ = 0 if 2D — A < 0). From now on we will restrict our
discussion to the case with= 2. Introducing the variable = tanh(C + ¢ +0) and using the
explicit expression off; (C + ¢ +0) [9], the saddle-point equation (10) can be written as

2D —

tanhilx =C+¢+ A F(x) (11)

with

Q.2
F(x) = % {x+3+31<1<k) [k(1+x2) _los ]} (12)
X T X

wherek = 4x(1 — x?)/(1 +x?)? and K (k) is the complete elliptic integral of the first kind.
We can now express equation (11) in terms ainly, using equations (7)—(9):

tanhlx = C+ DF(x)
-1 {1— 2A <1+ F(x)) [\yz—l <2A <1+@)) +2]} (13)
2(2+F(x)) 2 2

1 1
Wale) = —
? No ; 2— Y% |cosq, +&

with

(14)

where the sum ig is over the first Brillouin zone in the reciprocal lattice, having used the fact
that

1 2 1
fspu(z; A+ +n) = — E |n|:Z—(A+C+TI) COS(]#}——"”T- (15)
2N - ,; 2

No transition is obtained for the sub-system described in terms &f trariables [10] due
to the fact that we are il = 2. Following [8], we solved equation (13) fer~ xo = v2—1,
that is to say near the Ising solution. By setting- xo — §, equation (13) reads as

0o +A8+E8In|3| (16)
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where
B Ay V2 1 1
U—\/§D+C+A+E\I’2 [2A<1+7)]—Eln(l+ﬁ)—m
V2+1 8
=5 {1+2(A+D)—;(A+D)|n[2ﬁ(ﬁ—1)]}
S=;(1+f2)(A+D)
with
1 AZ —1y/ \/i
_m+7(\lf2 ) [ZA <1+7)] a7

2y 1in (17) indicates the derivative of the functidn, ! Itis straightforward to prove that
in the limit A — 0 one recovers the results obtained by Fradkin in [8]. Indépgd, can be
expanded at smafl as [11]

1 4

w6 = ) [1 — 26 +E%+ ‘% + o@ﬂ (18)

so thats tends to the valug/2D + C — % In(1++/2) and, from equation (17), it transpires that
AZ

A=+ o(A%). (19)
Settinge = 0 (i.e., on the phase boundary [8]) we find the solutions

5=0 (20)

§ = e ME = [2V2(V2 — 1)e /e /8AD), (21)

The nature of the transition depends on the sigtvof- D). For (A + D) > 0 both (20) and

(21) are solutions, with the double root being the stable solutions which minimize the free
energy. FoA + D) < 0, ato = 0 the only solution i$ = 0, which corresponds to the usual
critical transition, while fow £ 0 but small, there is a nonlinear relation betwéemdo [8].

The critical behaviour near the Ising solution is similar to that obtained by Fradkin for the
large N-limit of the Ashkin—Teller model [8]. In [8] the critical behaviour depends on the sign
of the four-spin coupling constanD(in our model): the transition is first order for positive
values of the four-spin coupling constant and second order for negative values. In our model
the critical behaviour is controlled by the sign of the quantity+ D). In order to describe

the behaviour of the transition line we show in figure 1 the plotafs a function ofd. It can

be seen from figure 1 that increases up to a maximum valwg, which is approximately
0.043, located a#A ~ 0.52, and then decreases, becoming zeté at 7.09. Thus we expect

the following behaviour in th€—-A coupling constant plane:

(1) D > 0. The transition line, defined by = 0, starts from the&”-axis at small positivel
with a first-order behaviour, then it becomes continuous at a tricritical paimtp = 0).

In the special cas® = 0, the point on the”-axis atA = 0 is a tricritical point since
A+D=0.

(2) —Ay < D < 0. The transition line has a second-order behaviour for small valugs of
then at a tricritical point it becomes first order up to a second tricritical point, where the
transition again becomes continuous. The range of valugadafwhich the transition is
first order reduces aB — —A,,, and the two tricritical points coalesce in a single point
whenD = —Ay,.
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Figure 1. The plot of A as function ofA. For a better Figure 2. The phase diagram of the model with= 0.

view, in the insetA is plotted in a smaller range of values The full and broken lines represent the continuous and

of A. first-order transition, respectively. Filled circles indicate
the positions of tricritical points.

(3) D < —Ay. The transition line is always continuous sin@e+ D) < 0VA.

We numerically solved the equation= 0 for different values oD. The phase boundary
for the caseD = 0 is shown in figure 2. A transition line starts from a tricritical point on
the C-axis, as previously explained, with a first-order behavigur € D) > 0). The Ising
transition point C/KsT = 1In(1 ++/2) >~ 0.44 [12]) is correctly recovered in the limit
A — 0 as one expects. M >~ 7.09,C ~ —6.50 there is a second tricritical point, where the
transition line becomes second ordek ¢ D) < 0). This behaviour is quite different from that
found by Monte Carlo simulations for theY -Ising model [4]. In that case the transition line
starts from the axis of Ising couplings with a continuous character which becomes first order
at a tricritical point atA ~ 3-5,C ~ —4.3. Moreover, Monte Carlo simulations found the
XY transition line, which intersects the other transition line (corresponding to the one shown
in figure 2) atA >~ 0.6, C ~ 0.15. Actually, a strict comparison between our phase diagram
and Monte Carlo results cannot be done since in our approximation the ordered phase for the
vector variables cannot be found. Itis interesting to observe that a boundary can be established
for the region of the phase diagram which contains the transition line. Indeed, for the general
properties of the functiomv,(¢) [13], the functionlllz‘l(g) is positive for& positive. This
fact can be used to determine the coupling constant space where the equatiGncan be
fulfilled. Using the expression @f and equating it to zero, it is straightforward to show that
for positive values ofi, there exists an upper boudt,, for the critical value of the coupling
constaniC, given by the equation

Coup = % In(1++/2) + — A—+2D. (22)

1
22 ++/2)
We find numerically that the transition line of the phase diagram tends asymptotically in the
limit A — oo to the straight line defined by the equation (22).

The phase diagram for the caBe= —0.03 is reported in figure 3. A second-order line
starts from the”-axis with a value” ~ 0.483, which is different from the Ising transition point
because the coupling constdnthanges the effective bond strength for the Ising spins. Then,
the critical line becomes first order at the tricritical point which occurs at 0.38, A ~ 0.24.

A second tricritical point is located & ~ —3.25, A >~ 3.88, where the transition line again
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0 2 4 and broken lines represent the continuous and first-order transition,

A respectively. Filled circles indicate the positions of tricritical points.

becomes second order. Also in this case we observe that the transition line tends asymptotically
to the straight line defined by equation (22).

It would be interesting to extend this analysisdte= 3, where one expects an ordered
phase for th&; variables in theV — oo limit [10]. At the same time it would be an important
endeavour to deduce a realistic picture of the model (2) beyond the oo approximation.

In summary, we have studied the phase diagram oNavector model coupled to an
N-colour Ashkin—Teller model in th&/ — oo limit in two dimensions. The resulting phase
diagrams are shown in figures 2 and 3 for two values of the four-spin coupling constant. They
show a transition line starting from the axis of Ising couplings whose behaviour depends on
the sign of quantity A + D). We find that there is a negative value Bfbelow which the
transition is continuous.
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