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Abstract. We introduce a vector model coupled to anN -colour Ashkin–Teller model and solve
its phase diagram in the large-N limit in two dimensions. It is shown that the transition line starts
from the axis of Ising couplings with a behaviour which can be critical or first order depending
on the strength of the four-spin coupling and of the coupling between spin and vector variables.
Below a negative value of the four-spin coupling the transition is always continuous.

The aim of this paper is to report results of the analytic study in the limit of infinite components
of a model where vector spins are coupled to Ising variables in such a way that the vectors only
interact inside each Ising domain. Models of this kind are expected to describe the critical
behaviour of a class of systems with O(2) × Z2 ground-state symmetry which includes, for
example, two-dimensional fully frustratedXY models [1]. The ground-state manifold of these
models possesses discrete Ising-like chiral symmetry in addition to global continuous rotation
symmetry in spin space and excitations consist of two types of stable topological defects:
line defects of chiral domain walls and point defects, which are vortices. Physical systems
described by the fully frustratedXY model are, for example, Josephson-junction arrays in a
transverse magnetic field with12 flux per plaquette [2].

A prototype model with the above characteristics is theXY -Ising model defined by the
Hamiltonian [3,4]

H = −β−1
∑
〈ij〉

[AEni · Enj (1 + sisj ) +Csisj ] (1)

whereβ−1 = KBT , the sum is over the nearest neighbours in a two-dimensional square
lattice, si = ±1 is an Ising spin at thei-site andEni is a two-component unit vector at the
i-site. The neighbouring vectors,Eni, Enj , interact with strength 2A only when the sitesi, j are
not separated by Peierls interfaces. The parameterC controls the amount of these interfaces.
The phase diagram of theXY -Ising model has been studied by several methods [3–5]. At
large values ofC there is Ising order and the usual Kosterlitz–Thouless transition for theXY

model has been observed. At smaller values ofC Monte Carlo [3, 4] and Migdal–Kadanoff
renormalization [5] results show that there is no phase with Ising disorder andXY order.
This has been related [6] to the symmetry of the model under the transformationEni → si Eni ,
since the vectorsEni are not coupled across an Ising domain wall wheresisj + 1 = 0. An
interesting locus of the phase diagram of the model is the line where Ising and vector variables
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simultaneously order. The critical exponents, associated with theZ2 order parameter, have
been found to vary systematically along this line which appeared to be non-universal [3].
Monte Carlo transfer matrix calculations [6] found no clear evidence for variation of these
exponents, which, however, are significantly different from the pure Ising values.

In this paper we consider a convenient generalization of the theXY -Ising model defined
by the partition function

Z =
∑
{sαi =±1}

∫ +∞

−∞

∏
i

dEni δ
( |Eni |2
N
− 1

)

× exp

{∑
〈ij〉

[
A Eni · Enj

(
1 +

1

N

N∑
α=1

sαi s
α
j

)
+C

N∑
α=1

sαi s
α
j +

D

N

( N∑
α=1

sαi s
α
j

)2]}
(2)

where the couplings have been rescaled in order to get a sensibleN → ∞ limit. A term
proportional toD which couples the different Ising species has been also introduced. For
A = 0 andN = 2 the model has the same Hamiltonian of the Ashkin–Teller model [7], whose
phase diagram in two dimensions in the largeN limit was studied in [8]. In the following we
will consider the model (2) in theN →∞ limit.

The constraints in the integral (2) can be recast by introducing the standardδ-function
representation

δ

( |Eni |2
N
− 1

)
= N

2π

∫ +i∞

−i∞
dzi exp

{
−Nzi

( |Eni |2
N
− 1

)}
(3)

where the integral is on the imaginary axis with Rez arbitrary. After expressing the biquadratic
terms in the Hamiltonian using the Hubbard–Stratanovich transformation, the partition function
can be rewritten as

Z =
(
N

2π

)N0
(√

N

2πA

)2N〈〉 (√
N

2π |2D − A|

)N〈〉

×
∫ +i∞

−i∞

∏
i

dzi

∫ +∞

−∞

∏
〈ij〉

dζij

∫ +i∞

−i∞

∏
〈ij〉

dηij

∫ +∞

−∞

∏
〈ij〉

dθij

× exp

{
N

[∑
i

zi − 1

2A

∑
〈ij〉
(ζ 2
ij − η2

ij )

− 1

2(2D − A)
∑
〈ij〉

θ2
ij −N0fI (C + ζij + θij )−N0fSPH (zi;A + ζij + ηij )

]}
(4)

whereN0 is the number of sites in the lattice,N〈〉 is the number of links,fI (C + ζij + θij ) is the
Ising free energy per site in zero magnetic field with bond exchange energies{C + ζij + θij }
and

fSPH (zi;A + ζij + ηij ) = − 1

N0
ln
∫ +∞

−∞

∏
i

dni exp

(
−
∑
i

zin
2
i +

∑
〈ij〉

(
A + ζij + ηij )ninj

)
.

(5)

We should observe that in (4) Reηij is arbitrary and the integral in dθij is on the real axis if
(2D−A) > 0 or on the imaginary axis with Reθij arbitrary if(2D−A) < 0. In theN →∞
limit the partition function can be evaluated by the steepest-descent method. Looking for
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homogeneous solutions of the saddle-point equationszi = z ∀i, ζij = ζ , ηij = η andθij = θ
∀〈ij〉, the free energy per site and per componentf ≡ − lnZ/NN0 reads as

f = −z +
d

2A
(ζ 2 − η2) +

d

2(2D − A)θ
2 + fI (C + ζ + θ) + fSPH (z;A + ζ + η) (6)

whered denotes the number of spatial dimensions. The saddle-point equations∂f/∂z = 0,
∂f/∂ζ = 0, ∂f/∂η = 0 and∂f/∂θ = 0 are

1= ∂fSPH (z;A + ζ + η)

∂z
(7)

dζ

A
= −∂fSPH (z;A + ζ + η)

∂ζ
− ∂fI (C + ζ + θ)

∂ζ
(8)

dη

A
= ∂fSPH (z;A + ζ + η)

∂η
(9)

dθ

2D − A = −
∂fI (C + ζ + θ)

∂θ
. (10)

Here the arbitrariness of Reη (and of Reθ if 2D − A < 0) is used for satisfying the above
equations with Imη = 0 (and Imθ = 0 if 2D − A < 0). From now on we will restrict our
discussion to the case withd = 2. Introducing the variablex = tanh(C + ζ + θ) and using the
explicit expression offI (C + ζ + θ) [9], the saddle-point equation (10) can be written as

tanh−1 x = C + ζ +
2D − A

2
F(x) (11)

with

F(x) = 1

2

{
x +

1

x
+

2

π
K1(k)

[
k(1 +x2)− 1− 3x2

x

]}
(12)

wherek = 4x(1− x2)/(1 + x2)2 andK1(k) is the complete elliptic integral of the first kind.
We can now express equation (11) in terms ofx only, using equations (7)–(9):

tanh−1 x = C +DF(x)

− 1

2(2 +F(x))

{
1− 2A

(
1 +

F(x)

2

)[
9−1

2

(
2A

(
1 +

F(x)

2

))
+ 2

]}
(13)

with

92(ξ) = 1

N0

∑
Eq

1

2−∑2
µ=1 cosqµ + ξ

(14)

where the sum inEq is over the first Brillouin zone in the reciprocal lattice, having used the fact
that

fSPH (z;A + ζ + η) = 1

2N0

∑
Eq

ln

[
z− (A + ζ + η)

2∑
µ=1

cosqµ

]
− 1

2
ln π. (15)

No transition is obtained for the sub-system described in terms of theEni variables [10] due
to the fact that we are ind = 2. Following [8], we solved equation (13) forx ∼ x0 =

√
2− 1,

that is to say near the Ising solution. By settingx = x0 − δ, equation (13) reads as

0' σ +3δ +4δ ln |δ| (16)
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where

σ =
√

2D +C +A +
A

2
9−1

2

[
2A

(
1 +

√
2

2

)]
− 1

2
ln(1 +

√
2)− 1

2(2 +
√

2)

3 =
√

2 + 1

2

{
1 + 2(1 +D)− 8

π
(1 +D) ln[2

√
2(
√

2− 1)]

}
4 = 4

π
(1 +
√

2)(1 +D)

with

1 = 1

2(2 +
√

2)2
+
A2

2
(9−1

2 )′
[

2A

(
1 +

√
2

2

)]
. (17)

(9−1
2 )′ in (17) indicates the derivative of the function9−1

2 . It is straightforward to prove that
in the limit A → 0 one recovers the results obtained by Fradkin in [8]. Indeed,9−1

2 can be
expanded at smallξ as [11]

9−1
2 (ξ) = 1

ξ

[
1− 2ξ + ξ2 +

ξ4

4
+ o(ξ6)

]
(18)

so thatσ tends to the value
√

2D +C− 1
2 ln(1 +

√
2) and, from equation (17), it transpires that

1 = A2

2
+ o(A4). (19)

Settingσ = 0 (i.e., on the phase boundary [8]) we find the solutions

δ = 0 (20)

δ = ±e−3/4 = ±[2
√

2(
√

2− 1)e−π/4]e−π/8(1+D). (21)

The nature of the transition depends on the sign of(1 +D). For (1 +D) > 0 both (20) and
(21) are solutions, with the double root being the stable solutions which minimize the free
energy. For(1 +D) < 0, atσ = 0 the only solution isδ = 0, which corresponds to the usual
critical transition, while forσ 6= 0 but small, there is a nonlinear relation betweenδ andσ [8].
The critical behaviour near the Ising solution is similar to that obtained by Fradkin for the
largeN -limit of the Ashkin–Teller model [8]. In [8] the critical behaviour depends on the sign
of the four-spin coupling constant (D in our model): the transition is first order for positive
values of the four-spin coupling constant and second order for negative values. In our model
the critical behaviour is controlled by the sign of the quantity(1 +D). In order to describe
the behaviour of the transition line we show in figure 1 the plot of1 as a function ofA. It can
be seen from figure 1 that1 increases up to a maximum value1M which is approximately
0.043, located atA ' 0.52, and then decreases, becoming zero atA ' 7.09. Thus we expect
the following behaviour in theC–A coupling constant plane:

(1) D > 0. The transition line, defined byσ = 0, starts from theC-axis at small positiveA
with a first-order behaviour, then it becomes continuous at a tricritical point (1+D = 0).
In the special caseD = 0, the point on theC-axis atA = 0 is a tricritical point since
1 +D = 0.

(2) −1M 6 D < 0. The transition line has a second-order behaviour for small values ofA,
then at a tricritical point it becomes first order up to a second tricritical point, where the
transition again becomes continuous. The range of values ofA for which the transition is
first order reduces asD→−1M , and the two tricritical points coalesce in a single point
whenD = −1M .
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Figure 1. The plot of1 as function ofA. For a better
view, in the inset1 is plotted in a smaller range of values
of A.

Figure 2. The phase diagram of the model withD = 0.
The full and broken lines represent the continuous and
first-order transition, respectively. Filled circles indicate
the positions of tricritical points.

(3) D < −1M . The transition line is always continuous since(1 +D) < 0 ∀A.

We numerically solved the equationσ = 0 for different values ofD. The phase boundary
for the caseD = 0 is shown in figure 2. A transition line starts from a tricritical point on
theC-axis, as previously explained, with a first-order behaviour ((1 + D) > 0). The Ising
transition point (C/KBT = 1

2 ln(1 +
√

2) ' 0.44 [12]) is correctly recovered in the limit
A→ 0 as one expects. AtA ' 7.09,C ' −6.50 there is a second tricritical point, where the
transition line becomes second order ((1+D) < 0). This behaviour is quite different from that
found by Monte Carlo simulations for theXY -Ising model [4]. In that case the transition line
starts from the axis of Ising couplings with a continuous character which becomes first order
at a tricritical point atA ' 3–5,C ' −4.3. Moreover, Monte Carlo simulations found the
XY transition line, which intersects the other transition line (corresponding to the one shown
in figure 2) atA ' 0.6,C ' 0.15. Actually, a strict comparison between our phase diagram
and Monte Carlo results cannot be done since in our approximation the ordered phase for the
vector variables cannot be found. It is interesting to observe that a boundary can be established
for the region of the phase diagram which contains the transition line. Indeed, for the general
properties of the function92(ξ) [13], the function9−1

2 (ξ) is positive forξ positive. This
fact can be used to determine the coupling constant space where the equationσ = 0 can be
fulfilled. Using the expression ofσ and equating it to zero, it is straightforward to show that
for positive values ofA, there exists an upper boundCsup for the critical value of the coupling
constantC, given by the equation

Csup = 1

2
ln(1 +

√
2) +

1

2(2 +
√

2)
− A−

√
2D. (22)

We find numerically that the transition line of the phase diagram tends asymptotically in the
limit A→∞ to the straight line defined by the equation (22).

The phase diagram for the caseD = −0.03 is reported in figure 3. A second-order line
starts from theC-axis with a valueC ' 0.483, which is different from the Ising transition point
because the coupling constantD changes the effective bond strength for the Ising spins. Then,
the critical line becomes first order at the tricritical point which occurs atC ' 0.38, A ' 0.24.
A second tricritical point is located atC ' −3.25, A ' 3.88, where the transition line again
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Figure 3. The phase diagram of the model withD = −0.03. The full
and broken lines represent the continuous and first-order transition,
respectively. Filled circles indicate the positions of tricritical points.

becomes second order. Also in this case we observe that the transition line tends asymptotically
to the straight line defined by equation (22).

It would be interesting to extend this analysis tod = 3, where one expects an ordered
phase for theEni variables in theN →∞ limit [10]. At the same time it would be an important
endeavour to deduce a realistic picture of the model (2) beyond theN →∞ approximation.

In summary, we have studied the phase diagram of anN -vector model coupled to an
N -colour Ashkin–Teller model in theN →∞ limit in two dimensions. The resulting phase
diagrams are shown in figures 2 and 3 for two values of the four-spin coupling constant. They
show a transition line starting from the axis of Ising couplings whose behaviour depends on
the sign of quantity(1 + D). We find that there is a negative value ofD below which the
transition is continuous.
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